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INTRODUCTION 

An important development in an evolving life 

form is the acquisition of characteristics, 

which bestow upon the organism the ability to 

survive the adverse conditions imposed by 

nutrient starvation. One of the examples is the 

production of biopolymers by several micro-

organisms. Once these characteristics are 

acquired, the life form then has a more secure 

basis for further development and 

diversification. In general, protection against 

starvation can be achieved by the organism 

accumulating reserve compounds (eg. 

biopolymers) during conditions of nutrient 

sufficiency and then degrading these storage 

materials during times of starvation, thereby 

maintaining viability. A wide variety of gram 

positive as well as gram negative bacteria, 

capable of biopolymer production, has been 

reported in literature. However, very few 

bacteria produce high concentrations of these 

polymers during their growth under natural 

environmental conditions. This is because, 

they are continuously utilized for energy 

requirements by the bacterial cells, and the rate 

of consumption may exceed the rate of its 

production (Silva & Garcia-Cruz, 2010). 
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ABSTRACT 

The inappropriate disposal of synthetic plastics has led to severe environmental health hazards. 

In order to combat these persistent issues, the synthesis of biodegradable polymers has been 

gaining interest recently. In the current study, an attempt was done to optimize the production of 

Polyhydroxyalkaonoates (PHA) by Azotobacter fabrum by adjusting various physicochemical 

conditions during the growth of the bacterium. The parameters optimized in our study were 

temperature, pH, aeration conditions, incubation period and carbon to nitrogen ratio. It was 

observed that A. fabrum produced maximum PHA at pH 7 and temperature 30°C in 48h. The 

most favoured carbon and nitrogen sources for PHA production were glucose and ammonium 

nitrate respectively, and the optimum C: N ratio was observed to be 50:1. On optimization 

approximately 33.02% increase in productivity was observed. 
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Among the biopolymers, the production of 

polyhydroxyalkanoates (PHAs) has been 

widely reported in bacteria. The PHAs are 

accumulated by different organisms hence 

they vary in properties and chemical 

composition due to different monomeric 

structure. They may exist as either 

homopolymer or copolymers. They are 

accumulated in the cytoplasm of bacterial cells 

as granules under surplus carbon, and limiting 

conditions of at least one other nutrient (like 

nitrogen or phosphate), which is essential for 

growth (Aramvash et al., 2015). The type of 

PHA produced is dependent on the substrate 

utilized during the process of biosynthesis, and 

the properties may differ depending on the 

monomer composition of the substrate and its 

molecular weight (Pacheco-Leyva et al., 

2016). These polymers have properties similar 

to synthetic plastics and have gained much 

attention as future biodegradable plastics (Lee, 

1996). 

 Although several bacteria accumulate 

PHA intra-cellularly, its industrial production 

has been possible using few bacteria including 

R. eutropha and recombinant E. coli. These 

organisms, however, have shown limited 

potential due to factors such as low stability 

and requirement of expensive carbon sources. 

Hence it is necessary to explore other 

microorganisms for production of PHA and 

other biopolymers. Since nature exhibits 

diverse climatic and environmental conditions, 

there is always a scope to discover better 

producers. In this regard, the potential of 

indigenous Rhizobacteria isolates like 

Azotobacter sp. has been suggested by several 

researchers for their capacity of PHA 

accumulation. 

 The Azotobacters are obligate aerobic 

bacteria that can grow on simple mineral salts 

medium containing basic sugar to produce 

PHA. The Azotobacter sp. carry out a variety 

of metabolic pathways in order to fix 

atmospheric nitrogen and they can easily direct 

excess carbon towards the synthesis of 

biopolymers such as polysaccharides or 

polyhydroxyalkanoates. In general, the 

polysaccharide synthesis is a common feature 

of Azotobacter sp. Another advantage of these 

isolates is their ability to utilize various toxic 

and agricultural waste compounds, and 

produce valuable biopolymers. This process 

enhances the feasibility of industrial 

production of PHA, which otherwise, depends 

on the use of expensive raw materials like 

glucose and sucrose (Belder, 1993, & Kang et 

al., 1993). The content of biopolymers in 

rhizobia is reported to be in the range of 30-

65% of dry cell weight (Tombolini & Nuti, 

1989). Kim and Chang (1998) reported PHB 

production in Azotobacter chroococcum in 

presence of starch as carbon source and 

oxygen limiting conditions. The source of 

nitrogen used for production of PHB also 

affects the yield in Azotobacter sp. (Kennedy 

et al., 1982; & Emtiazi et al., 2004). 

 In this regard, the current study was 

carried out with an objective to optimize PHA 

production from Azotobacter sp. isolated from 

soil sample. 

 

MATERIALS AND METHODS 

Sample collection and isolation of PHA 

producer 

A PHA producing Azotobacter sp. was 

screened and isolated in a previous study from 

garden soil sample (Qureshi et al., 2014).  

Identification of the potential isolate 

The molecular phylogeny of the most 

promising PHA producing Azotobacter sp. was 

determined by amplifying genomic partial 

16srRNA. Based on the similarity in 

sequences of Azotobacter strain with other 

bacteria, a phylogenetic tree was also obtained 

to identify the most probable strain. The 

analysis was carried out at Codon Bioscience 

Pvt. Ltd, Goa, India. 

Extraction of biopolymer using solvent 

extraction method 

The cell biomass was treated with 60 times 

volume of chloroform and allowed to rest for 

4h at 30°C in an extraction funnel. Water was 

added to keep the film static for 12h. On 

formation of a clear polymer, it was separated 

from the solvent mixture and poured in a 

watch glass for drying, in order to ensure 

removal of chloroform. The obtained sample 
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of biopolymer (in powdered form) was 

dissolved in chloroform and quantified 

(Ramsay et al., 1994). 

Quantification of extracted biopolymer 

The biopolymer obtained after solvent 

extraction process was quantified using 

Slepecky and Law (1960) method with the 

help of UV spectrophotometer at 235nm. For 

this purpose, a standard graph of crotonic acid 

assay was prepared and the estimation of 

polymer was done by extrapolating the values 

obtained for test sample on standard graph. 

Crotonic acid was used in the assay since, the 

action of heat causes de-polymerization of 

PHA into crotonic acid. 

          The biomass and yield of biopolymer 

was calculated using the following formula.

 

        
                                          

                    
 

 

                 
                          

             
       

 
 

Optimization of parameters for biopolymer 

production 

The optimization of PHA biosynthesis was 

determined in nutrient broth by inoculating 5% 

culture suspension and incubating at 28°C for 

48h under shaker conditions (110rpm). The 

PHA was extracted using the optimized 

extraction method and estimated quantitatively 

by the method described above (Slepecky & 

Law, 1960). The different physico-chemical 

parameters were optimized for biopolymer 

accumulation by altering one factor at a time, 

keeping the other variables constant, at a 

specific set of conditions. All experiments 

were run in triplicates. The varying factors 

included pH (5.0, 6.0, 7.0, 8.0 and 9.0), 

temperature (28°C, 37°C, 45°C and 55°C), 

aeration (static and shaker) condition and time 

(24h, 48h, 72h, 96h and 120h). For 

optimization of different parameters, cultures 

were grown in 50mL nutrient broth and 

incubated at shaker conditions. In addition to 

the above parameters, the effect of different 

carbon and nitrogen sources were studied 

under previously optimized conditions. The 

carbon sources used in our study included 

fructose, sucrose, glucose, mannitol and 

glycerol. The sources of nitrogen included 

sodium nitrate, potassium nitrate, ammonium 

nitrate, ammonium sulphate and urea. Further, 

the effect of various carbon and nitrogen ratios 

was also determined on biopolymer 

accumulation (Bonartseva et al., 2003; 

Bormann et al., 1998; & Pal et al., 1998). 

 

RESULTS 

Identification of the potential isolate 

The PHA producing isolate was identified as 

Azotobacter fabrum on 16srRNA analysis and 

observations from the phylogenetic tree 

(Figure 1). 

 

 
Figure 1: Phylogenetic tree for bacteria (Azotobacter) using partial 16S rRNA gene sequence 
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Extraction and quantification of biopolymer 

Azotobacter fabrum was grown in nutrient 

broth and the biopolymer was extracted using 

solvent extraction method. For this purpose, 

the biomass obtained was calculated after 

centrifugation and drying of the cells. The 

biopolymer yield was calculated from the 

standard graph of crotonic acid assay. The 

biomass, biopolymer concentration and yield 

of polymer was calculated as 1.063 µg/mL, 

0.312 µg/mL and 29.41% respectively. 

Optimization of parameters for biopolymer 

production 

The results for optimization of 

physicochemical parameters for accumulation 

of biopolymer by Azotobacter fabrum are 

represented below. The optimum conditions 

favouring biopolymer production were 

obtained under shaker conditions (Figure 2) of 

growth in 48 h (Figure 3). The 

physicochemical conditions like pH 7 (Figure 

4) and temperature 30°C (Figure 5) supported 

the accumulation of PHA in our study. The 

most favoured carbon (Figure 6) and nitrogen 

sources (Figure 7) for biopolymer production 

were glucose and ammonium nitrate 

respectively, and the optimum C: N ratio was 

observed to be 50:1 (Figure 8) for maximum 

biopolymer production. Thus our studies 

indicated production of biopolymer in 

stationary phase and nitrogen limiting 

conditions by Azotobacter fabrum. Under 

optimized conditions, the PHA yield increased 

from initial 29.41% to 43.91%. 

 

 

Figure 2: Optimization of aeration condition for biopolymer production from Azotobacter fabrum 

 

 
Figure 3: Optimization of Incubation period for biopolymer production from Azotobacter fabrum 
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Figure 4: Optimization of pH for biopolymer production from Azotobacter fabrum 

 

 

Figure 5: Optimization of Temperature for biopolymer production from Azotobacter fabrum 

 

 

Figure 6: Optimization of Carbon sources for biopolymer production from Azotobacter fabrum 
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Figure 7: Optimization of Nitrogen sources for biopolymer production from Azotobacter fabrum 

 

 

Figure 8: Optimization of Carbon: Nitrogen ratio for biopolymer production from Azotobacter fabrum 
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occurrence in soil. For any industrial process, 

the ready availability of raw material is a 

crucial requirement. Not only are Azotobacter 

sp. easy to isolate but also they are easier to 

maintain under laboratory conditions. 

Moreover, unlike most bacteria that produce 

PHA in the stationary phase of growth, 

Azotobacter sp. are capable of PHA 

production during active growth. This factor 

can significantly improve the product yield on 

optimization. In nitrogen fixers like 

Azotobacter beijerinckii, Azotobacter insignia 

and Rhizobium ORS571, PHA synthesis within 

the nodule gets induced under conditions of 

stress like low oxygen state or diminished 

redox potential (Saharan & Badoni, 2007; 

Senior et al., 1972; Stam et al., 1986; & 

Stockdale et al., 1968).  

 The production of PHAs is dependent 

on various factors like type of the organism, 

cell density, the constituents present in the 

nutrient medium, and physico-chemical 

parameters like pH, temperature, aeration and 

incubation period. Thus, the optimization of 

these factors is a crucial step to maximize the 

yield of PHA from micro-organisms. For a 

medium to be selected as an optimal 

production medium, it should enable cell 

biomass as well as PHA accumulation. The pH 

and temperature has an impact on metabolite 

production and microbial growth. An increase 

in pH beyond optimum may cause changes in 

solubility of media components and cell 

permeability (Umesh et al., 2017). It may also 

lead to degradation of biopolymers resulting in 

PHA depletion at the same rate as its 

production (Nakata, 1963). Temperature 

affects the growth of bacteria by regulating the 

metabolic activities, biochemical composition 

and enzymatic functions of a cell and hence 

affects PHA yield (Inagraham, 1962). Elevated 

temperatures may cause thermal inactivation 

of the enzymes responsible for biosynthesis of 

PHA (Tajima et al., 2003). The size of the 

inoculum also influences the length of the lag 

phase of the culture which successively affects 

the growth, the efficiency of biopolymer 

production and the incubation time. Hence, the 

optimum PHA production can also be 

achieved using a two stage strategy, whereby 

the cells are grown in a suitable medium 

initially to increase biomass followed by 

exposing them to stress conditions that ensures 

PHA accumulation (Madison & Huisman, 

1999).  

 Oxygen is essential for sustenance of 

the reducing power. Minor difference in 

oxygen availability affects the tricarboxylic 

acid cycle (TCA cycle) leading to significant 

changes in the metabolite distribution, 

including biopolymer accumulation, in various 

micro-organisms (Almeida et al., 2010). The 

high cell mass leading to oxygen depletion 

during growth phase hinders the TCA cycle 

resulting in accumulation of NAD (P) H that 

inhibits citrate synthase. The accumulated 

cofactor is then used by various organisms for 

PHA synthesis (Quillaguaman et al., 2006). 

Almeida et al. (2010) discovered that 

substantial variations in the metabolite 

distribution of various organisms can be 

observed due to small variations in oxygen 

availability. Lafferty et al. (1988) detected 

stimulation of PHA accumulation under 

oxygen limited conditions in Ralstonia 

eutropha and Azotobacter beijerinckii. 

Research has proved that conserving oxygen is 

essential for sustaining the reducing power and 

excessive aeration reduces PHB yield (Third et 

al., 2003; & Salehizadeh & Van Loosdrecht, 

2004). PHA accumulation was influenced by 

aeration, accumulation was the highest under 

shaker conditions in a flask containing less 

medium whereas a decrease was reported as 

the volume of medium increased (Kato et al., 

1992). Suzuki et al. (1986) reported that in 

Pseudomonas sp. K, the rate of growth and 

PHA synthesis decreased with limitation in 

concentration of dissolved oxygen. Research 

has shown that with increase in agitation rate 

PHA yield reduced which may be due to the 

stress created by oxygen limitation at lower 

rpm, leading to increase in PHA accumulation 

(Wei et al., 2011). 

 In the current study, 29.41% PHA 

yield was obtained from Azotobacter fabrum 

under random environmental conditions. On 

optimization, it increased up to 43.91% under 
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optimized conditions of growth. This is 

approximately 33.02% increase in 

productivity. These optimized growth 

conditions for PHA production by Azotobacter 

fabrum was pH 7, temperature 30°C, and 

shaker conditions. The presence of glucose 

and ammonium nitrate in the ratio 50:1 was 

the optimum nutritional parameter noted in our 

study. 

  

CONCLUSION 

The polyhydroxyalkanoates are a 

biodegradable energy reserve material of 

micro-organisms. Most interestingly, they can 

be exploited as a substitute to petroleum-

derived plastics. The fundamental studies 

leading to industrial application of such 

products are critically essential for a much 

needed sustainable development processes. A 

simple yet efficient technology is possible with 

the help of microbiology to develop an 

integrated system for continuous production of 

valuable products like bioplastics. The minute 

cell factories are capable of endless production 

of high-valued industrially relevant metabolic 

products, provided they obtain the necessary 

growth and nutritional requirements. We have 

definitely come a long way, through 

biochemical insights, in our understanding of 

PHA biosynthesis, triggers and inhibitions. 

With the help of similar studies we can soon 

establish an industrial process contributing 

positively to overcome key elements that 

present themselves as obstacles for current 

implementation of bioplastic applications. 

Most importantly, the relevant questions on 

cost of production and yield of PHA can be 

hopefully answered in near future. In addition, 

such studies open a whole new dimension for 

understanding of various interlinked metabolic 

processes that connect the ecological prospects 

like diversity and evolution. Moreover, 

successful implementation of microbial based 

plastics will help in overcoming environmental 

pollution. 
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